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Coherent bremsstrahlung from relativistic electrons in quasicrystals
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In this paper we develop a Born-approximation theory of coherent bremsstrahlung~CB! production by
relativistic electrons in icosahedral quasicrystals~IQCs!, described by a schematic model that incorporates the
presence of phonon and phason disorder. Our main result is a formula for the cross sectiondsCB /dk of this
process, differential with respect to the photon energyk. It predicts intense low-energy CB emission~type-A
CB! when an electron is incident on an IQC along a direction almost, but not exactly, parallel to that of a major
axis. It also entails a scaling law that could serve as a powerful experimental signature of type-A CB emitted
by these IQCs and more general ones. We illustrate our theory by discussing numerical results for type-A CB
emitted by electrons of 5-MeV kinetic energy incident in a direction close to a fivefold axis of icosahedral
Al-Mn-Si ( i -Al-Mn-Si) described by the above model. These calculations predict the presence of CB macro-
peaks indsCB /dk vs k, to which many smaller peaks contribute, and which should be experimentally detect-
able. This is also expected to be the case for other directions of incidence. Reasons for believing that the
schematic model yields qualitatively correct predictions for this cross section for relativistic electrons incident
on reali -Al-Mn-Si are stated.
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I. INTRODUCTION

The purpose of the present paper is to initiate the theo
ical study of coherent bremsstrahlung~CB! emitted by ener-
getic electrons traversing quasicrystals~QCs!. Before sum-
marizing its contents, it may be helpful to discuss briefly C
produced by fast electrons in crystals. This type of ofg ra-
diation has been extensively studied experimentally
theoretically during the last 40 years@1#. It occurs when a
crystal target is irradiated with relativistic electrons who
incident momenta are parallel or almost parallel to ma
crystal axes or planes. There are two kinds of CB in cryst
the most common of which arises from ‘‘free-free’’ radiativ
transitions and the other from ‘‘free-bound’’ transition
@2,3#. In contrast, a related type of coherentg radiation,
channeling radiation, arises from ‘‘bound-bound’’ transitio
@2#. Here ‘‘free’’ refers to electronic states described
plane-wave solutions of Dirac’s equation for a free electr
which are good approximations to the corresponding ex
solutions when the magnitude of the incident electron m
mentump is sufficiently large. On the other hand, the ter
‘‘bound’’ refers to electronic states which are solutions
Dirac’s equation describing free motion along the direct
of a major crystal axis to whichp is almost parallel, and
transversely bound in the plane perpendicular to this dir
tion. We can distinguish two types of free-free CB in cry
tals: typeA and typeB. Roughly speaking, type-A CB is
intense radiation lying in the lower portion of the CB spe
trum that can be emitted when the incident electron mom
tum p is almost, but not exactly, parallel to a set of ma
1063-651X/2001/64~4!/046505~10!/$20.00 64 0465
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crystal planes. Type-B CB is less intense, higher-energy r
diation that can be emitted whenp is approximately, or even
exactly aligned, along a major crystal axis@4#.

It is well known that QCs, although they are aperiod
possess long-range order and that their atoms are distrib
along lines and planes analogous to those in crystals@5#. It is
therefore natural to expect that fast electrons traversing Q
in appropriate directions can emit CB of typesA and B,
defined analogously to the corresponding types in crystal
is thus very satisfying that type-B CB from a T-phase QC
irradiated with 200- and 400-keV electrons has been dete
at an electron microscope at the Max Planck Institute in S
tgart @6#. In view of the great current interest in the study
properties of QCs, one expects that other experiments
accelerators and electron microscopes will be performed
investigate CB and CR production in these materials@7#.

In this paper we will discuss a theory of CB emissio
from relativistic electrons traversing icosahedral quasicr
tals ~IQCs! with phonon and phason disorder@8# which are
described by a simple model~K model!. In particular, we
will derive a Born-approximation formula for the cross se
tion, differential with respect to photon energy, for CB pr
duction in such IQCs. Using this formula, we have calcula
this cross section numerically for the case of type-A CB
emitted by 5-MeV electrons incident on icosahed
Al-Mn-Si( i -Al-Mn-Si) ~Ref. @9#!. These calculations predic
the presence of irregularly distributed macropeaks to wh
many smaller peaks contribute. Although the smaller pe
may not be individually observable, the macropeaks to wh
they give rise should be. These results are in strong con
©2001 The American Physical Society05-1
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with the regular distribution of peaks in the CB spectra fro
electrons traversing crystals. The corresponding cross
tions for type-A or type-B CB in more realistic QC models
are expected to exhibit similar properties. The feasibility
experimental detection of the above macropeaks is enha
by the fact that our theory predicts that type-A CB obeys a
distinctive scaling law that could serve as its experimen
signature.

At present, about 100 intermetallic compounds of ico
hedral quasicrystalline structure are known@10# as well as
many such compounds with other types of quasicrystal
symmetries. However, complete structural information
lacking for many of them. A basic reason for this is th
quasiperiodicity introduces too many structural variables
x-ray diffraction analyses to cope with@11#. All available
methods will probably be needed in order to arrive at a s
isfactory general understanding of the structure of QCs. T
makes theoretical studies of CB production in QCs, such
the present one, especially timely, since they furnish an
dependent way of testing structural models experimenta

This paper is organized as follows. In Sec. II we rec
some basic quasicrystallographic facts which we use to
fine theK model. In addition, this section includes a discu
sion of the kinematics of CB from relativistic electrons tr
versing an IQC described by this model and a statemen
the above cross-section formula for CB production in it. T
formula is proved in Appendix B. In Sec. II we also defin
CB of typesA and B from such IQCs and discuss their s
lient properties, including the scaling law for type-A CB al-
luded to earlier. The above-mentioned numerical results
i -Al-Mn-Si, as well as their analytical interpretation, are pr
sented in Sec. III. In Sec. IV, the final section, we give re
sons for expecting that these results differ only qualitativ
from the corresponding ones for relativistic electrons in
dent on reali -Al-Mn-Si. We also mention an interestin
topic for future research on CB emitted from QCs with
phason disorder. Appendixes A and C collect results nee
in Sec. II, and in Appendix D we prove properties of C
peaks that are used in Sec. III. Finally, in Appendix E,
consider the effects of Landau-Pomeranchuk-Migdal and
electric suppression@12,13# on our numerical predictions
concluding that most of the predicted CB peaks are un
fected by these phenomena. In future work, we intend
apply the present method to study coherent pair produc
in QCs.

II. THEORY OF CB FROM RELATIVISTIC ELECTRONS
IN A MODEL IQC

A. Auxiliary quasicrystallographic facts and definition
of the K model

The icosahedral quasilattice~IQL! considered can be gen
erated by the cut-projection method@14,15#, which we re-
view briefly in this section both for the sake of completene
and to introduce useful notation. The experts will find no
ing new here. The method will be applied to the s
dimensional simple cubic lattice
04650
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L5H a(
i 51

6

mi«i ;miPZ, i 51, . . . ,6J ~2.1!

of side lengtha, where$« i% is the standard basis inR6 andZ
denotes the integers. In this method, a projection operatoP
~see Ref.@14#, especially p. 184, whereP5p! mapsR6 into
a three-dimensional subspaceE of R6 which is identified
with ordinary physical space, while its orthogonal comp
ment E8 is commonly called perpendicular space. IfX
5PY andX85P8Y, whereYPR6 andP85I 2P, we will
say thatX, X8 is a complementary pairor simply that these
vectors arecomplementary. An important property ofP is
that if YPL, then the vectors of the complementary pairX,
X8 are in 1-1 correspondence.

The model IQL of interest is defined as the setK of all
points ~vectors! XPE which belong to the set

L5PL5H a(
i 51

6

miei :miPZ, i 51, . . . ,6J ~2.2!

and whose unique complementary vectorsX8PE8 lie in an
open triacontahedronC(a) with center at the origin. Here
C(a)5P8g6 , where g6 is the open six-dimensional cub
g65$(zI ,...,z6)PR6:-a/2,zi,a/2, i 51, . . . ,6% of side
lengtha, centered at the origin@14,15#. The points ofK are
the vertices of prolate and oblate rhombohedrons which
gether tileE ~Ammann tiles! @16#. A schematic modelK0 of
a perfect static IQC is obtained by placing a single atom
species~Mn in our numerical calculations! at each of the
vertices of the Ammann tiles ofK. This model has satisfac
torily explained to first order the observed electro
diffraction patterns of icosahedral QCs@17,18# and has
proved useful in studying the feasibility of ion channelin
therein@19#. It can be viewed as a first step in constructingK,
the more realistic disordered IQC, which we now define.

K belongs to an extensive class of disordered IQCs
cussed by Jaric´ and Nelson@20#. Physically, it models an
IQC in which phonons and phasons are thermalized, o
which the phasons have been quenched at a high temper
and the phonons thermalized at the lower quenching t
perature. The reader will find further details in Ref.@20#.
Formally, we identifyK with a set of disordered realization
Kw of K0 which are distributed in a Gaussian manner@20#.
EachKw is defined by the following two steps. First, for eac
pair XPL, X8PL85P8L of complementary vectors, le
w(X,X8)5u(X) % u8(X8) be a random vector, whereu(X)
and u8(X8) are complementary. ThenKw is defined as the
discrete subset ofL consisting of all vectorsX1u(X)(X
PL) whose complementary vectorsX81u8(X8) are in
C(a). Second, the disordered IQCKw is obtained by placing
an atom of a single atomic species at each site ofKw . In
other words,Kw is the disordered version ofK0 obtained by
displacing the atom at each tile vertexX of K by u(X). The
random vectorsu(X) andu8(X8) are interpreted as phono
and phason displacements, respectively.
5-2
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COHERENT BREMSSTRAHLUNG FROM RELATIVISTIC . . . PHYSICAL REVIEW E 64 046505
B. CB kinematics and Born-approximation formula
for dsCB Õdk

Before stating the formula for the cross sectiondsCB/dk
of CB production by relativistic electrons incident of IQC
described by theK model, which is our main result, we con
sider some kinematical properties of the relevant CB.

The energy-momentum conservation laws for CB emit
by electrons traversing the disordered IQCK are expressed
by the relations@21#

E5E81k, p5p81k1G ~GPL* !. ~2.3!

Here p,p8,k denote the initial and final electron momen
and the photon momentum, respectively;E5(p21m2)1/2,
E85(p821m2)1/2, k5uku denote the corresponding ene
gies, with p5upu, p85up8u and with m the electron rest
mass;G denotes the momentum transfer to the quasilatt
and

L* 5H ~2p/a!(
i 51

6

mi«iPZ, i 51, . . . ,6J . ~2.28!

These laws are analogous to the corresponding ones for
tals @22#. They arise from the delta functionsd(q2G)(G
PL* ) occurring in ^ur̃w(q)u2&0 in Eq. ~B9!, where q5p
2p82k, and fromd(E2E82k) in Eq. ~B10!.

In the relativistic regime (g[E/m@1), the only vectors
G in L* contributing significantly to the CB fromK are
those withuGu!p. Whence Eqs.~2.3! entail that for givenp
and G the energy of a CB photon emitted in the directi
k̂5k/k is well approximated by

k5
p•G

E2p• k̂1p̂•G
. ~2.4!

Using Eq.~2.4!, one sees that for givenp andG the energy
of each emitted CB photon lies in the interval 0<k
<kG(p̂), where

kG~ p̂!5
p•G

E2p1p̂•G
, ~2.5!

with p̂5p/p. HencedsCB/dk, viewed as a function ofk,
drops sharply at each suchkG(p̂), thus forming a peak
Equivalently, the only vectorsGPL* contributing to the
emission of CB photons of energyk for a givenp are those
for which

p̂•G>D~x!, ~2.6!

wherex5k/E and D(x) is the magnitudep2p82k of the
minimum momentum transfer toK, which is accurately
given by

D~x!>
~E2p!k

p2k
>

Ex

2g2~12x!
~2.7!
04650
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in the relativistic regime. Sincep will be fixed henceforth,
the p dependence ofkG(p̂) and D(x) has been omitted, a
will also be done in the case of otherp-dependent quantities

Contrary to the case of the analogous CB cutoff energ
for ordinary crystals, thekG(p̂) are dense in the kinemati
cally allowed photon energy region 0,k<kmax>E. @This
follows in a standard way from Eqs.~2.2! and~2.4!, and the
irrationality of 51/2.# Most of the above drops indsCB/dk
are too small to be experimentally observable. However,
certain directionsp̂ close to a QC direction~see Ref.@5#! it
can happen that thekG(p̂) corresponding to an infinite num
ber of distinct vectorsGPL* coincide. This can lead to a
large drop indsCB/dk, and hence to a large, observab
peak @23#. We term such peaksmacropeaks. ~Concrete ex-
amples of macropeaks for type-A CB are given in Sec. III.!
Large CB peaks in crystals have a similar origin; but wh
for directions p̂ close to appropriate crystal directions th
distribution of these peaks falls into regular patterns, tha
CB peaks in QCs is always irregular, due to the densenes
the kG(p̂).

The promised formula for the cross sectiondsCB/dk is

~k/Ns0!~dsCB/dk!

5 (
GPL*

F~G,x,p̂!exp~22BuGu2

22B8uG8u2!ux̃~2G8!u2, ~2.8!

and is derived in Appendix B@24#. HereN is the number of
atoms in the IQC;s05z2ar 0

2, wherez is their atomic num-
ber, a> 1

137, and r 0 the classical electron radius; and ex
(22BuGu2), exp(22BuG8u2) are the Debye-Waller factor
arising from phonon and phason fluctuations, respectiv
@25#. We defineF(G,x,p̂) as

F~G,x,p̂!5
uw~G!u2D~x!

a6V~a!

Gt
2

Gl
2 H 11~12x!2

2
4~12x!D~x!@Gl2D~x!#

Gl
2 J ~2.9!

if G obeys condition~2.6! and as zero otherwise. In Eq
~2.9!, V(a)521/2(11t)(32t)1/2a3, the volume of the tria-
contahedronC(a), where t5(51/211)/2; Gl5p̂•G, Gt

5(G22Gl
2)1/2, where G5uGu; and w(uGu)

5(1/az)*R3 exp(2iG•r )v(r )dr . Herev(r ) is the electron-
atom interaction potential, which will be assumed to be
the Thomas-Fermi-Molie`re form @26#. Therefore,

w~G!54p(
i 51

3
a i

~b i /a0!21G2 , ~2.10!

where (a1 ,a2 ,a3)5(0.10,0.55,0.35), (b1 ,b2 ,b3)
5(6,1.2,0.3), anda0 is the screening length in the Thoma
Fermi theory. Finally,x̃ denotes the Fourier transform of th
characteristic functionx of C(a) @27#. An exact formula for
x̃ due to Elser@15# is stated as Eq.~C1! in Appendix C for
the reader’s convenience.
5-3
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Naturally,B andB8 will be assumed to be positive unles
otherwise stated. Under this hypothesis, one can easily p
that the series~2.8! converges for allp̂ if GPL* and 0<x
,xmax.

C. Definitions of CB of typesA and B, and scaling law
for type-A CB

In this section, we will consider a fixed, but arbitrary un
vector d̂ parallel to an IQC direction~axis! ~Ref. @5#!, Eq.
~2.8! can be written in the form

~k/Ns0!~dsCB/dk!5SA~x,p̂;d̂!1SB~x,p̂;d̂!, ~2.11!

whereSA(x,p̂,d̂) @respectively,SB(x,p̂,d̂)# is the part of the
series~2.8! contributed by vectorsGPL* with G•d50 ~re-
spectivelyG•dÞ0!. CB of these two respective types
called type-A and type-B CB ~with respect tod̂!. From this
definition and arguments similar to those adduced to arriv
Eq. ~2.13!, these types of coherent radiation from the abo
disordered IQCK have the following qualitative properties
Type-A CB is very intense at sufficiently smallpositiveval-
ues of x when p̂ is almost, but not exactly, parallel tod̂
(Gl>0), and is sensitively dependent on the angle betw
p̂ and d̂. On the other hand, forp̂>d̂, or even forp̂5d̂,
type-B CB is significant only at much larger values ofx
!1. It is generally much less intense than that of type-A and
varies slowly withu. These properties are similar to those
the corresponding types of CB in crystals@22#.

We now mention an important property of type-A CB in K
which could serve as its experimental signature. Consid
right-handed orthonormal basis$d̂i% i 51

3 for E such thatd̂3

5d̂ is viewed as the polar axis. Let 0<u<p denote the
angle betweenp̂ and d̂3 , and 0<f,2p that between the
projection ofp̂ into the d̂1 ,d̂2-plane andd̂1 . We have

p̂•G5sinu~cosfG11sinfG2!1cosuG3 , ~2.12!

where Gi5G•d̂i ( i 51,2,3). Using the definition of
SA(x,p̂;d̂), and taking into account Eqs.~2.9! and ~2.7!, the
definitions Gl5(p̂•G), Gt5(G22Gl

2)1/2, and Eq. ~2.12!,
one concludes that ifu.0 andx.0 are sufficiently small,
then the approximate scaling law

SA~x,p̂;d̂!>~1/sinu! f ~x/sinu,f! ~2.13!

holds for type-A CB emitted by relativistic electrons traver
ing K. A similar scaling law holds in the Born approximatio
for CB of this type occurring in a large class of QCs who
tiles are decorated more realistically than those ofK. An
analogous law that is predicted to hold for crystals has b
verified experimentally for type-A CB emitted by electrons
of about 3-MeV kinetic energy incident on Si crystals@28#.
In these beautiful experiments, this law served to iden
type-A CB.
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III. NUMERICAL RESULTS ON TYPE- A CB
FOR THE DISORDERED IQC MODEL K

In this section we will discuss results of numerical calc
lations ofSA(x,p̂;d̂) andSB(x,p̂;d̂) for electrons of 5-MeV
kinetic energy incident oni-Al-Mn-Si, described by the spe
cialization of theK model ~vertex model! in which a Mn
atom is placed at each vertex of the disordered tiles ofK. In
these calculations, we assumed thata521/234.6 Å ~see Ref.
@19#! and chose directions of incidence close toî3 , i.e., al-
most parallel to an axis of fivefold symmetry. Here$ i j% j 51

3 is
the right-handed orthonormal basis of the physical spacE
mentioned in Appendix A. Hence we naturally chosed̂i

5 î i ( i 51,2), d̂35d̂5 î3 . Thus, the vectorsGPL* @recall
Eq. ~2.28!# involved in our calculations ofSA(x,p̂;d̂) @re-
spectively,SB(x,p̂;d̂)# were those withG35G• î350 ~re-
spectively,G3Þ0!. A simple argument using Eq.~A1! in
Appendix A, ~2.28!, and the irrationality of 51/2 show that
GPL* is such thatG350 if and only if

G5~2p/a!(
i 51

4

mi~ei2e5!, ~3.1!

wherem1 ,...,m4 are arbitrary integers.
Since d̂5 î3 in this section, SA(x,p̂; î3) @respectively,

SB(x,p̂; î3)# will be abbreviated bySA(x,p̂) @respectively,
SB(x,p̂)# henceforth without fear of confusion. We will firs
review our numerical results for type-A CB and will then
comment briefly on those for type-B CB. By the above dis-
cussion and the fact thatx̃(2G8)5x̃(G8) for GPL* ,

SA~x,p̂!5 (
GPL0*

exp~22BuGu222B8uG8u2!

3F~G,x,p̂!ux̃~G8!u2, ~3.2!

whereL0* is the subset ofL* composed of vectorsG of the
form Eq. ~3.1!. Hence the sum in Eq.~3.2! can be written as
a quadruply infinite sum over all integersm1 , . . . ,m4 . It
was evaluated by using the truncationumi u<8 (i
51, . . . ,4) in most cases, but occasionally a higher-ord
truncation was employed. In Figs. 1 and 2, we depict res
for SA(x,p̂) in the interval 0<x<0.005, assuming that th
parametersB,B8 determining the phonon and phason Deby
Waller factors have the respective values 0.01 and 0.4 Å2, in
agreement with the widely held view thatB8 is usually much
larger thanB @29#. Indeed, values ofB8 as large as 1.35 hav
been advocated in the experimental literature@30#. Our cal-
culations were performed using exact values ofx̃(G8) ob-
tained from Elser’s formula~C1! in Appendix C rather than
by making the equivalent-sphere approximation, commo
employed to compute the intensity of the Bragg diffracti
peaks of QCs@31#. This approximation consists of replacin
the complicated exact expression for the Fourier transformx̃
of the characteristic functionx of C(a) by that of a sphere of
the same volume centered at the origin. Errors of about 1
would have been incurred by making it. An overall accura
5-4
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COHERENT BREMSSTRAHLUNG FROM RELATIVISTIC . . . PHYSICAL REVIEW E 64 046505
FIG. 1. SA(x,p̂) vs x for electrons of 5-MeV kinetic energy
incident oni -Al-Mn-Si ~described by the model defined in the fir
paragraph of Sec. III! in a direction close to that of a fivefold axis
With u,f defined as in Sec. III~second sentence, third paragrap!,
parts ~a!–~c! of the figure refer to the following cases:~a! u
51°, f50° (0,x<0.005); ~b! u51°, f52° (0.0005<x
<0.005); ~c! u51°, f52° at very low photon energies (0,x
<0.0005). Note that the missing part of the graph in Fig. 1~b! for
0,x<0.0005 is depicted in detail in Fig. 1~c!.
04650
better than 2% was achieved in the present calculation
SA(x,p̂) by using Elser’s formula and the above truncatio

A rich variety of type-A CB phenomena was revealed b
these calculations. Before summarizing the results, we re

that in the present case (d̂5 î3) u,f are the angles betweenp̂
and î3 , and betweenî1 and the projection ofp̂ into the î1 , î2
plane, respectively. Figure 1~a! concerns the case whenp̂ is
given byu51°, f50°. It depicts three type-A macropeaks
and two smaller peaks. In this case, eachkG(p̂) (GPL0)
depends on themi only through a unique pair of integer
m15m11m4 , m25m21m3 @property ~1!, Appendix D#.
Hence, infinitely many different quadrupletsm1 ,m2 ,m3 ,m4
correspond to each suchkG(p̂), which accounts for the large
vertical drops depicted in Fig. 1~a! @23#. The pairsm1 ,m2
labeling the peaks in this figure are as indicated there. M
generally@properties~2! and ~3!, Appendix D#, for arbitrary
u.0 a necessary condition for each such quadruplet to p
sess this property is that

FIG. 2. SA(x,p̂) vs x for electrons of 5-MeV kinetic energy
incident oni -Al-Mn-Si ~described by the model defined in the fir
paragraph of Sec. III! in a direction close to that of a fivefold axis
With u, f defined as in Sec. III~second sentence, third paragraph!,
parts~a! and ~b! of the figure refer to the following cases:~a! u
51°, f518° (0,x<0.005); ~b! u51°, f513° (0,x<0.005).
5-5
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s tanf5a1A5b, ~3.3!

where s5sin(2p/5) and a,b are rationals. In more deta
@property ~3!, Appendix D#, when Eq.~3.3! does not hold,
exactly one quadruplet m1 ,...,m4 corresponds to eac
kG(p̂) (GPL0* ). Whenp̂ is changed tou51°, f52°, one
sees from Fig. 1~b! that the drops in the three largest peaks
Fig. 1~a! become ‘‘fragmented’’ into smaller drops, and Fi
1~c! shows that several very large peaks appear at extrem
small x values (0,x<0.0005) when this change is mad
The smallness of these drops is expected sincef52° vio-
lates~3.3! @32#, which implies that the drops are due to th
loss of only one term of the sum~3.2!. As to the low-energy
type-A peaks in Fig. 1~c!, our theory predicts their occur
rence foru.0 whenf.0 is small enough. The vectorsG
PL0* contributing to them are overwhelmingly those f
which m352m2 , m452m1 , where m1 ,m2 are suitable
positive integers.

It is well known that the Landau-Pomeranchuk-Migd
~LPM! and dielectric supression effects@12,13# can act to
reduce very soft bremsstrahlung emission. As discusse
Appendix E, we expect that the LPM effect will not redu
any of the peaks in Figs. 1 or 2, and that dielectric supp
sion will affect at most the lowest peak in Fig. 1~c!.

Figures 2~a! and 2~b! depict results for the respectiv
casesu51°, f518° andu51°, f513°. In the first case
f satisfies Eq.~3.3! @33# and macropeaks with ‘‘clean’’ ver
tical drops are very much in evidence, as in Fig. 1~a!. In the
second case,f does not satisfy it, and the drops are fra
mented, similarly to those shown in Fig. 1~b!. Fragmentation
was also detected in another case in which Eq.~3.3! is vio-
lated, namely,u51°, f515°.

The results in Figs. 1 and 2 are fairly insensitive to rath
large variations inB and B8. For example, decreasingB8
from 0.4 to 0.1 Å2 while keepingB50.01 Å2 increased the
intensity of the highest peak in Fig. 1 by only 17%. On t
other hand, settingB50.001 while keepingB850.4 Å2 in-
creased this intensity by only 16%. The qualitative shape
the graph ofSA(x,p̂) in Fig. 1~a! and the positions of the
vertical drops in this figure wereunchangedby these varia-
tions.

Finally, a spot check of the accuracy of the experimenta
significant scaling law~2.13! for type-A CB atx50.005 and
f50 showed that in this case the value ofSA(x,p̂) is 0.8599
~respectively, 0.4299! for u51° ~respectively,u52°!, in ex-
cellent agreement with this law.

We now turn to the results forSB(x,p̂) obtained by sum-
ming the sixfold infinite series representing it. We confi
our remarks to the caseu51°, f50. Since the calculation
of a reasonably detailed graph forSB(x,p̂) would have taken
an unreasonably long time with the computer facilities at
disposal, we only performed spot evaluations of this quan
For 0<x<0.005, the ratio ofSB(x,p̂) to the maximum value
of SA(x,p̂) in this interval was found to be less than 4%
Spot checks in the interval 0.005<x<0.100 indicate that
SA(x,p̂)1SB(x,p̂) lies between 0.2 and 0.5 there, and th
that in the latter interval bothSA(x,p̂) andSB(x,p̂) are small
in comparison with the said maximum value.
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IV. CONCLUDING REMARKS

We have developed a Born-approximation theory of C
emission by relativistic electrons traversing the primiti
model of i-Al-Mn-Si ~vertex model!, in which a Mn atom is
placed at each vertex of the Ammann rhombohedrons.
structure ofi-Al-Mn-Si has been investigated by x-ray an
neutron-diffraction experiments, whose results have been
terpreted in the framework of the theory of atomic hypers
faces. This has led to the following conclusions: the rho
bohedral vertices are occupied with very high probability
Mn atoms, positions on the faces are occupied with a cer
frequency of occurrence by Al atoms, and Si atoms
placed at three different sites along the long diagonal of
prolate rhombohedrons@19#. How well should one expec
that the cross sectionds̃CB/dk, differential with respect to
the photon energyk, for CB production in reali-Al-Mn-Si
QCs be approximated by Eq.~2.8!? Briefly, for p̂ close to a
major axis, one expects that the largest CB peaks
ds̃CB/dk occur at the same values ofx and have the same
shapes, qualitatively speaking, as those predicted by
~2.8!, but that they differ from them quantitatively. The re
son for this is twofold. First, the summands on the rig
hand-side~rhs! of the Born series~2.8! and those in the cor-
responding series fords̃CB/dk run over allGPL* and are
given by a product of a function ofG,x,p̂ independent of the
atomic decoration times the intensity of the Bragg diffracti
spot atGPL* . @This follows by arguments of the type use
to prove Eq.~2.8! in Appendix B# Second, one expects that
there is a prominent Bragg peak of the vertex model inde
by a givenGPL* , then a large Bragg peak will appear fo
the sameG in the case of its more realistic counterpart, b
that the intensities of corresponding Bragg reflections for
two models will generally be different, due to the differen
in decorations@34#.

Needless to say, detailed formulas for CB production
relativistic electrons incident on realistically decorated mo
els of i-Al-Mn-Si and other IQCs could be obtained, straigh
forwardly but tediously, by the methods of the present pap
Rather than dwelling on this matter, we close this section
mentioning an important topic not considered in this pap
Since x-ray diffraction experiments show that IQCs w
little or no phason disorder exist in nature@35#, it would be
very interesting to measure the CB cross section, a differ
tial with respect tok, for such materials and compare it wit
the corresponding theoretical results. The problem is that
Born series for this cross section converges very slowly
not at all for such IQCs, due to the smallness of th
B8-values. The theoretical challenge is to devise a rigorou
justified method for accelerating its numerical convergen
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APPENDIX A: AUXILIARY QUASICRYSTALLOGRAPHIC
FORMULAS

Setei5P«i , e8 i5P8«i ( i 51, . . .,6), where$«i%
6

i 51 is
the standard basis ofR6 andP8 the projection complemen
tary to P. Using a convenient orthonormal basis$ i j%

3
j 51 in

E, such thati3 is parallel toe6 , which in turn is parallel to a
fivefold symmetry axis, we can write

ei5~10!21/2
„2 cos~2p i /5!,2 sin~2p i /5!,1… ~ i 51, . . . ,5!,

e65~0,0,221/2!, ~A1!

where (x1 ,x2 ,x3)5( j 51
3 xj i j . In terms of a suitable ortho

normal basis$ i8 j% j 51
3 of E8, and writing (x81 ,x82 ,x83)

5( j 51
3 xj8i j8 , the vectorsei8 can be expressed in the form

~A1!, but with e1 ,e2 ,e3 ,e4 ,e5 ,e6 replaced by
e81 ,e84 ,e82 ,e85 ,e83 ,2e86 , respectively.

APPENDIX B: DERIVATION OF THE CROSS-SECTION
FORMULA „2.8…

As a first step for deriving this formula for theK model,
we make some remarks on theK0 model. Directly from the
definition ofK andK0 in Sec. II A, it follows that the atomic
density ofK0 is given by

r~x!5 (
XPL

d~x2X!x~2X8!. ~B1!

whereL is defined by Eq.~2.2a!, x is the characteristic func
tion of C(a), andX,X8 are complementary vectors. The in
teraction potential of an electron with the atoms inK0 is
assumed to have the form

V~x!5 (
XPL

v~x2X!x~2X8!, ~B2!

wherev(x) is the value of the shielded Coulomb potential
an atomic nucleus at the origin acting on an electron ax
PE, which we assume to be of the Thomas-Fermi-Molie`re
form. Note that

V~x!5E
E
v~x2y!r~y!dy. ~B3!

By standard results of quantum electrodynamics@36#, the
differential cross section for the processp→p81k in which
an unpolarized electron of momentump traveling through
K0 produces a bremsstrahlung photon and a scattered
tron of momentak andp8, respectively, is given by@21#

d6s/dkdp85uṼ~q!u2Ma~p,p8,k!d~E2E82k! ~B4!
04650
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to order a2(a>1/137). Hereq5p2p82k, and we recall
that k5uku, k are the respective photon energy and mom
tum and thatE5(p21m2)1/2, E85(p821m2)1/2 are the ini-
tial and final electron energies, respectively, withp5upu,
p85up8u, and withm the electron rest mass:

Ṽ~q8!5E
E

exp~2 iq8•x!V~x!dx ~B5!

~see Ref.@27#!; and the functionM is independent ofK0
andV, and contains no delta functions. By the definition
Kw in Sec. II A, it follows that the atomic densityrw(x) and
interaction potential of an electron with the atoms ofKw are
defined by the respective formulas

rw~x!5 (
XP L

d„x2X5u~X!…x„2X82u8~X8!…, ~B6!

Vw~x!5 (
XP L

v„x2X2u~X!…x„2X82u8~X8!…

5E
E
v~x2y!rw~y!dy. ~B7!

By the second equality~B7!, the Fourier transform ofVw
can be expressed as

Ṽw~q8!5~2p!23/2ṽ~q8!r̃w~q8!. ~B8!

By definition, the cross section for the above bremsstrahl
processp→p81k in K is given by Eq. ~B4!, but with
uṼ(q)u25(2p)23uṽ(q)u2ur̃(q)u2 replaced by ^uṼw(q)u2&
5(2p)23. uṽ(q)u2^ur̃w(q)u2&, where ^ & is an appropriate
Gaussian average@20# over the random variablesw. More
specifically,

^ur̃w~q!u2&5N
~2p!3

a6V~a! (
GPL*

d~q2G!ux̃~2G8!u2

3exp~22BuGu222B8uG8u2!1¯ , ~B9!

where the sum ranges over the setL* defined by Eq.~2.28!,
N is the number of atoms inK, V(a) the volume ofC(a),
and exp(22BuGu2) and exp(22B8uG8u2) the respective
Deybe-Waller factors arising from phonon and phason fl
tuations. The terms on the rhs of Eq.~B9! involving delta
functions d(q2G)5d(p2p82k2G) are the only ones
contributing to coherent bremsstrahlung, since those den
by ‘‘ 1¯ ’ ’ contain no delta functions involvingq, and thus
can only contribute to incoherent bremsstrahlung.

In summary, the cross section for an unpolarized elect
in K with momentump to produce acoherentbremsstrah-
lung photon and an electron with momentak,p8, respec-
tively, can be written as

d6sCB/dkdp85~2p!23uṽ~q!u2^ur̃w~q!u2&0M~p,p8,k!

3d~E2E82k! ~B10!

to ordera2, where^ur̃w(q)u2&0 denotes the terms in the rh
of Eq. ~B9! preceding ‘‘1¯ ’ ’ .
5-7
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In the small-angle and high-energy approximations@37#,
which are accurate enough for our purposes, we arrive a
desired formula~2.8! by using Eqs.~B10! and~2.3!, the defi-
nition of ^ur̃w(q)u2&0 , and the expression forM @36#, after
tedious but straightforward calculations.

APPENDIX C: EXACT FORMULA FOR x̃„G8…

The Fourier transform@27# of the characteristic functionx
of the triacontahedronC(a) is a real-valued function given
by @38#

x̃~G8!/a35 (
1< i , j ,k<6

S1~ i , j ,k!S2~ i , j ,k!, ~C1!

where G85(2p/a)S i 51
6 miei8 , as before. We note that th

rhs of ~C1! is independent ofa. For 1< i , j ,k<6,

S1~ i , j ,k!5v lmn~sinzl /zl !~sinzm /zm!~sinzn /zn!,

S2~ i , j ,k!5S 4

5
2

2

5
s i jk D coszicoszj coszk,

1S 1

5
1

2

5
s i jk D cos~s jk zi1skizj 1 s i j zk,

~C2!

wherei,j,k,l,m,n is a permutation of 1, 2, 3, 4, 5, 6 and sinz/z
is defined as unity whenz50.

The significance of the other symbols in Eq.~C2! is as
follows. For 1< i , j ,k<6, v i jk denotes the volume of th
rhombohedron with edgese8 i ,e8 j ,e8k :

v i jk5
~51/22s i jk !

2353/4 , ~C3!

where we recall thate8 i5P8«i and wheres i jk5s i j s jkski
ˆ ,

with s i j 5s j i 5sign(e8 i ,e8 j ) ( i , j 51, . . .,6). Explicitly,

@s i j # i , j 51, . . . ,653
1 21 1 1 21 21

21 1 21 1 1 21

1 21 1 21 1 21

1 1 21 1 21 21

1 1 21 1 21 21

21 1 1 21 1 21

21 21 21 21 21 1

4 ,

~C4!

as follows directly, but tediously, from the formulas for th
ei8 obtainable from Appendix A. Finally, fori 51, . . . ,6,

zi5
p

2 Fmi1521/2 (
j 5 i , j 51, . . . ,6

s i j mj G . ~C5!
04650
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APPENDIX D: PROOF OF CERTAIN PROPERTIES

OF kG„p̂… „G«L 0* … FOR d̂Ä î 3

This appendix is devoted to proving properties of the
cutoffs which are needed in Sec. III. Of course, in this a
pendix we choosed̂i5 î i ( i 51,2), d̂5d̂35 î3 , where the or-
thonormal bases$d̂i% i 51

3 and $ î i% i 51
3 are defined in Sec. III

and Appendix A, respectively. Thus,d̂ is parallel to a fivefold
axis. Denoting byu,f the polar and azimuthal angles ofp̂
defined in Sec. III@second sentence of the paragraph conta
ing Eq.~3.3!#, we proceed to prove the following three pro
erties ofkG(p̂) (GPL0* ). @Recall the definition ofL0* after
Eq. ~3.2!.#

~1! If u.0 andf50, then each suchkG(p̂) depends on
the mi @recall Eq.~3.1!# only throughm i5mi1m4 and m2
5m21m3 .

To prove this and other properties asserted in this app
dix, we will need the fact that the componentsGi5G•d̂i ( i
51,2,3) ofGPL0* are given by

G15~2p/a!A2/5@~c21!~m11m4!1~c821!~m21m3!#,
~D1a!

G25~2p/a!A2/5s@~m12m4!12c~m22m3!#,
~D1b!

G350. ~D1c!

wherec5cos(2p/5), c85cos(4p/5), s5sin(2p/5). This fol-
lows, in particular, from Eqs.~3.1! and~A1!, and the defini-
tion of L0* . By Eqs.~2.12! and ~D1c!,

P•G5sinu~G1 cosf1G2 sinf!. ~D2!

Property~1! follows immediately from Eqs.~D1!, ~D2!, and
~2.5!.

~2! If s tanf5a1A5b, where a,bPQ, the rationals,
then to each value ofkG(p̂) (GPL0* ) there corresponds a
denumerably infinite number of distinct vecto
(m1 ,m2 ,m3 ,m4)PZ4.

We will prove this property by showing that under th
stated hypothesis the equationp̂•G50 is satisfied by a de-
numerably infinite number of distinct vectorsGPL0* .
Henceforth, we assume thatG obeys this last relation.

By Eqs.~D1a!, ~D1b!, ~D2!, ands tanf5a1A5b, it fol-
lows thatp•G5g1A5d, whereg,dPQ, and thusp•G50
is equivalent to the pair of equationsg50, d50. If in addi-
tion sinu cosfÞ0, these equations are equivalent to the m
trix equation

Mm50, ~D3!

wherem5col(m1 ,m2 ,m3 ,m4) andM is a 234 matrix over
Z of rank 2 depending ona,b. It follows @39# that there exist
a 232 matrix APGL(2,Z) and a 434 matrix
BPGL(4,Z) such that

AMB5Fd1 0 0 0

0 d2 0 0G .
Hered1 ,d2 are unique positive integers~invariant factors of
M! such thatd1 divides d2 . Therefore, the most genera
(m1 ,m2 ,m3 ,m4)PZ4 satisfying Eq.~D3! is given by
5-8
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mi5 (
j 53,4

Bi j nj ~ i 51, . . . ,4!, ~D4!

wheren3 ,n4 are arbitrary integers. This completes the pro
of property~2!.

~3! Let s tanf¹Q(A5), where Q(A5)5$r1A5s:r,s
PQ%. Then to each value ofkG(p̂) (GPL0* ) there corre-
sponds exactly one (m1 ,m2 ,m3 ,m4)PZ4.

The proof is similar, but much simpler than that of pro
erty ~2!.

APPENDIX E: LPM AND DIELECTRIC SUPPRESSION
EFFECTS ON LOW-ENERGY CB EMISSION

FROM i-AL-MN-SI †40‡

The Landau-Pomeranchuk-Migdal~LPM! effect @12,13#
is the suppression of low-energy bremsstrahlung photons
cause of multiple scattering of the incident electron within
distance known as the~radiation! formation length l f
52g2/k ~see Ref.@21#!. Originally, the phenomenon wa
only considered for ordinary bremsstrahlung, but the ba
arguments involved also apply to CB in QCs, to which w
confine ourselves henceforth. In order for the latter radiat
to be significantly LPM suppressed, the conditionx5k/E
,E/ELPM should be satisfied. For a monoatomic mater
ELPM~eV!53.831012X0~cm!, where X0 is the radiation
length 137/2zr0

2n log(183z21/3), with n the number of atoms
per cm3, z their atomic number, andr 0 the classical electron
radius. For i -Al74Mn20Si6, an upper bound forELPM is
s

ie
, E

W

d
-

th
te
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1.63107 MeV ~the value ofELPM for solid Mn!. Hence a
necessary condition for CB from 5-MeV kinetic energy ele
trons to experience large LPM suppression in this QC is t
x,3.431027. We thus conclude that this does not occur f
any of the CB peaks in Figs. 1 and 2.

Dielectric suppression@12,13# takes place because of th
interaction of the bremsstrahlung photons with the electr
in the medium via Compton scattering. This interaction c
be coherent for forward scattering, producing a photon ph
shift. If this phase shift is large enough over the formati
length, then a loss in coherence results which reduces ph
emission. A necessary condition for large dielectric suppr
sion is that x,vp /m, where vp5A4pN^z&e2/m is the
plasma frequency and̂z& the average value of the atom
numberz in the medium. Fori -Al74Mn20Si6, this condition
becomesx,0.8231024, i.e., k,0.45 keV for the case of
5-MeV kinetic energy electrons of interest here. Thus, no
of the CB peaks depicted in the figures are significantly
duced by dielectric suppression, except possibly the low
energy peak in Fig. 1~c!.

With modern detection devices, one can measure x ray
energies as low as 0.5 keV@40#. We also remark that very
few of the peaks in Figs. 1 and 2 lie close to the absorpt
edges of Al, Si, and Mn@41#. This is fortunate, since the
corresponding characteristic x rays could impede their dir
observation. However, we note that the scaling law~2.13!
could be used to find such CB peaks indirectly by varyingu,
keepingf and E fixed, in a way similar to that used b
Watson and Koehler@42#.
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